Mapping the 2018 East Africa floods from space with smapr

September 25, 2018

By: Max Joseph

Hundreds of thousands of people in east Africa have been displaced and hundreds have died as a result of torrential rains which ended a drought but saturated soils and engorged rivers, resulting in extreme flooding in 2018. This post will explore these events using the R package smapr, which provides access to global satellite-derived soil moisture data collected by the NASA Soil Moisture Active-Passive (SMAP) mission and abstracts away some of the complexity associated with finding, acquiring, and working with the HDF5 files that contain the observations (shout out to Laura DeCicco and Marco Sciaini for reviewing smapr, and Noam Ross for editing in the rOpenSci onboarding process).

Chat with the rOpenSci team at upcoming meetings

September 21, 2018

By: Stefanie Butland

You can find members of the rOpenSci team at various meetings and workshops around the world. Come say ‘hi’, learn about how our software packages can enable your research, or about our process for open peer software review and onboarding, how you can get connected with the community or tell us how we can help you do open and reproducible research.

Building Reproducible Data Packages with DataPackageR

September 18, 2018

By: Greg Finak

Sharing data sets for collaboration or publication has always been challenging, but it’s become increasingly problematic as complex and high dimensional data sets have become ubiquitous in the life sciences. Studies are large and time consuming; data collection takes time, data analysis is a moving target, as is the software used to carry it out. In the vaccine space (where I work) we analyze collections of high-dimensional immunological data sets from a variety of different technologies (RNA sequencing, cytometry, multiplexed antibody binding, and others).

What have these birds been studied for? Querying science outputs with R

September 11, 2018

By: Maëlle Salmon

In the second post of the series where we obtained data from eBird we determined what birds were observed in the county of Constance, and we complemented this knowledge with some taxonomic and trait information in the fourth post of the series. Now, we could be curious about the occurrence of these birds in scientific work. In this post, we will query the scientific literature and an open scientific data repository for species names: what have these birds been studied for?

What are these birds? Complement occurrence data with taxonomy and traits information

September 4, 2018

By: Maëlle Salmon

Thanks to the second post of the series where we obtained data from eBird we know what birds were observed in the county of Constance. Now, not all species’ names mean a lot to me, and even if they did, there are a lot of them. In this post, we shall use rOpenSci’s packages accessing taxonomy and trait data in order to summarize some characteristics of the birds’ population of the county: armed with scientific and common names of birds, we have access to plenty of open data!

Page 1 of 42