
Enhancing R package quality with testthat

Yaoxiang Li

2025-01-20

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 1 / 17



The importance of unit testing in R package development

Why Testing Matters:

Catch bugs early: Testing prevents regression by ensuring changes don’t break existing
functionality.
Encourage modularity: Writing tests leads to modular code that is easier to debug and
maintain.
Enable collaboration: Comprehensive tests make it easier for contributors to understand
and extend the package.
Support continuous integration: Tests are essential for CI pipelines that ensure your
package is always in a deploy-able state.

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 2 / 17



testthat Basics and core features

Key Functions:
1 test_that(description, code): Organizes individual tests.
2 Expectations:

Basic Expectations:
▶ expect_equal(), expect_identical(), expect_true(), expect_false().

Error and Warning Testing:
▶ expect_error(), expect_warning(), expect_message().

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 3 / 17



Example: Testing mathematical operations.
library(testthat)

test_that("basic_arithmetic_operations_work_correctly", {
expect_equal(1 + 1, 2)
expect_identical(2 * 3, 6)
expect_true(is.numeric(10 / 2))

})

Skipping Tests: Useful when external resources are unavailable.
test_that("test_skipped_when_internet_is_unavailable", {
skip_if_offline()
expect_error(httr::GET("https://some-api-url.com"))

})

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 4 / 17



Organizing your tests for maintainability

Structure:

Use a tests/testthat directory for organization.
Naming convention: Align test file names with function names (e.g., test_function.R).

Special Files:

setup.R: Code executed before running tests.
teardown.R: Code executed after tests complete.
helper-*.R: Functions shared across multiple tests.

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 5 / 17



Practical scenarios with examples

Testing Data Validation: - Check if a function properly validates inputs.
test_that("Function rejects invalid inputs", {
expect_error(my_function(NULL), "Input cannot be NULL")
expect_error(my_function("invalid_string"), "Input must be numeric")

})

Testing Random Outputs: - Use fixed seeds to ensure reproducibility.
set.seed(42)
random_output <- sample(1:10, 5)

test_that("Random output is consistent with fixed seed", {
expect_equal(random_output, c(9, 2, 6, 7, 5))

})

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 6 / 17



Applying testthat to the medrxivr Package

Applications of Unit Testing in medrxivr

The medrxivr package demonstrates the importance of comprehensive testing for ensuring
the reliability and reproducibility of bioinformatics tools. Here are some applications from its
test suite:

Example of API Testing

Objective: Validate data integrity and ensure consistent output when accessing external APIs.

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 7 / 17



Example:
library(testthat)
test_that("check_data_inputs_return_the_same_number_of_results", {
skip_on_cran()
skip_if_offline() # Skips tests when offline or API is unavailable
mx1 <- mx_search(
data = mx_snapshot("6c4056d2cccd6031d92ee4269b1785c6ec4d555b"),
query = "dementia", from_date = "2019-01-01", to_date = "2020-01-01")

mx2 <- mx_search(
data = mx_api_content(

from_date = "2019-01-01", to_date = "2020-01-01", include_info = TRUE
), query = "dementia")

expect_equal(nrow(mx1), nrow(mx2))
})

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 8 / 17



File download and export testing
Objective:

▶ Tests validate naming schemes (e.g., ID-based and DOI-based).
▶ Includes status updates and error handling for missing files.

Example:
library(testthat)
mx_result <- data.frame(
link_pdf = "https://www.medrxiv.org/content/10.1101/19003301v4.full.pdf",
ID = "271", doi = "10.1101/19003301")

test_that("naming_of_downloaded_pdfs", {
skip_on_cran()
skip_if_offline()
tmpdir <- tempdir()
mx_download(mx_result, tmpdir, name = "ID")
expect_true(file.exists(paste0(tmpdir, "/271.pdf")))

})

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 9 / 17



Syntax and query validation

Objective: Test parsing and transformation of complex queries.
▶ Ensures consistent query transformations (e.g., capitalization, wildcard handling).
▶ Verifies expected behavior for logical operators like NEAR.

Example:
library(testthat)

test_that("syntax_operators", {
expect_true(grepl(mx_caps("ncov"), c("NCOV", "ncov", "NcOv")))
expect_false(grepl(mx_caps("Test test"), "test test"))

})

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 10 / 17



Test Fixtures
Create temporary files or environments for isolated tests.

with_temp_file <- function(code) {
temp_file <- tempfile()
on.exit(unlink(temp_file), add = TRUE)
code(temp_file)

}

test_that("Temporary file handling", {
with_temp_file(function(temp_file) {
writeLines("Hello, world!", temp_file)
expect_true(file.exists(temp_file))
expect_equal(readLines(temp_file), "Hello, world!")

})
})

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 11 / 17



Custom Expectations

Create reusable expectations to simplify complex checks.
expect_multiple_of <- function(x, multiple) {

if (x %% multiple != 0) {
stop(sprintf("%s is not a multiple of %s", x, multiple))

}
invisible(TRUE)

}

test_that("Custom expectation works", {
expect_multiple_of(10, 5)
expect_error(expect_multiple_of(10, 3), "10 is not a multiple of 3")

})

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 12 / 17



Example of using snapshot

test_that("Data frame snapshot remains consistent", {
expect_snapshot_value(generate_dataframe(), style = "json2") # Compatible style

})

test_that("Snapshot with large data", {
set.seed(123) # Ensure reproducibility
large_df <- data.frame(id = 1:1000, value = rnorm(1000))
expect_snapshot_value(large_df, style = "json2")

})

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 13 / 17



Snapshot Directory Customization

Snapshot testing is a powerful feature in testthat that helps validate the state of complex
outputs. The ability to capture and compare object states over time ensures stability in
package behavior. Additionally, customizing snapshot directories through monkey patching
enhances testing workflows.

Customizing Snapshot Directories

By default, snapshot files are saved in tests/testthat/_snaps/. However, it is sometimes
necessary to customize this directory without modifying the testthat source code. This can
be achieved by dynamically modifying internal behavior at runtime.

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 14 / 17



Example: Modifying Snapshot Directory with Custom Patching

cus_ss_dir <- function(function_name, new_directory,
old_directory = "_snaps") {
target_function <- getFromNamespace(function_name, ns = "testthat")
function_body <- deparse(body(target_function))
updated_body <- gsub(sprintf('"%s"', old_directory),
sprintf('"%s"', new_directory), function_body, fixed = TRUE)
body(target_function) <- parse(text = paste(updated_body, collapse = "\n"))
assignInNamespace(function_name, target_function, ns = "testthat")

}
cus_ss_dir("test_files_reporter", "_snapshots")
cus_ss_dir("snapshot_meta", "_snapshots")

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 15 / 17



Pros: - Allows snapshots to be saved in tests/testthat/_snapshots/ or any other
preferred directory. - Works seamlessly with existing expect_snapshot() and
expect_snapshot_file() functions.

Additional Customization for Relative Paths
For portability across environments, avoid absolute paths. Instead, use relative paths:
cus_ss_dir("test_files_reporter", "../../custom_snaps")
cus_ss_dir("snapshot_meta", "../../custom_snaps")

Cons: - This approach relies on internal testthat structures, which may change in future
releases (Use tools like renv to manage dependencies and ensure compatibility). - Avoid
hardcoding absolute paths to maintain cross-platform compatibility.

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 16 / 17



Best Practices for New Contributors

1 Write tests alongside code: Don’t leave testing as an afterthought.
2 Start small: Focus on simple expectations before moving to complex scenarios.
3 Use readable descriptions: Ensure test descriptions clearly convey the intent.
4 Review coverage: Use tools like covr (https://covr.r-lib.org/) to identify untested areas.
5 Check for edge cases: Test boundary values, empty inputs, and unusual conditions.

Yaoxiang Li Enhancing R package quality with testthat 2025-01-20 17 / 17


